Salt-Sensitive Mutants of Chlamydomonas reinhardtii Isolated after Insertional Tagging.

نویسندگان

  • R. Prieto
  • J. M. Pardo
  • X. Niu
  • R. A. Bressan
  • P. M. Hasegawa
چکیده

We describe the isolation of salt-sensitive Chlamydomonas reinhardtii mutants by insertional mutagenesis using the nitrate reductase (Nit1) gene. The plasmid pMN24, containing Nit1, was used for transformation of 305CW15 (nit1 cw15 mt+), and transformants were selected for complementation of the nit- phenotype. From 6875 nit+ colonies, four transformants (S4, S18, S46, and S66) were isolated that exhibited both Na+ and Li+ sensitivity (sod-), and another transformant (S33) was selected that exhibited sensitivity to Li+ but not Na+ (lit-) based on relative growth comparisons with the wild-type strain. S33, S46, and S66 were no more growth inhibited by sorbitol than was 305CW15. In comparison, S4 and S18 exhibited substantial growth inhibition in medium supplemented with sorbitol. Genetic analyses indicated that the salt-sensitive mutants were each defective in a single recessive gene. The mutant genes in S4 (sod1), S33 (lit1), and S66 (sod3) are linked to a functional copy of Nit1 and are presumably tagged with a pMN24 insertion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.

The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and ins...

متن کامل

Pleiotropic mutants hypersensitive to heavy metals and to oxidative stress in Chlamydomonas reinhardtii.

Insertional mutagenesis was used in Chlamydomonas reinhardtii to isolate original mutants hypersensitive to multiple drugs and physical agents. Out of 5200 transformants analyzed, 13 mutants belonging to seven phenotypic classes were isolated. Five were exclusively sensitive to cadmium and represented two loci. The other mutants were pleiotropic and presented a cross sensitivity to several (2--...

متن کامل

Characterization of DNA Repair Deficient Strains of Chlamydomonas reinhardtii Generated by Insertional Mutagenesis

While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair p...

متن کامل

Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis.

Chlamydomonas is a popular genetic model system for studying many cellular processes. In this report, we describe a new approach to isolate Chlamydomonas genes using the cloned nitrate reductase gene (NIT1) as an insertional mutagen. A linearized plasmid containing the NIT1 gene was introduced into nit1 mutant cells by glass-bead transformation. Of 3000 Nit+ transformants examined, 74 showed mo...

متن کامل

Intragenic Enhancers and Suppressors of Phytoene Desaturase Mutations in Chlamydomonas reinhardtii

Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis--...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 112 1  شماره 

صفحات  -

تاریخ انتشار 1996